<u>Some molar masses to</u> <u>help speed things up</u> <u>for you</u> ☺
$C_3H_8 = 44.1$
O ₂ = 32
$H_2O = 18$
Al ₂ (SO ₃) ₃ = 294.2
NaOH = 40
Na ₂ SO ₃ = 126.04
Al ₂ O ₃ = 101.96
Fe = 55.85
CuCl ₂ = 134.45
NaNO ₃ = 84.995
Cu(NO ₃) ₂ = 187.56
NaCl = 58.443
Ba ₃ (PO ₄) ₂ = 601.92
Na ₃ (PO ₄) = 163.94
$BaCl_2 = 208.2$

Some molar masses to help speed things up for you 😳 $C_3H_8 = 44.1$ O₂ = 32 $H_2O = 18$ $AI_2(SO_3)_3 = 294.2$ NaOH = 40 $Na_2SO_3 = 126.04$ $AI_2O_3 = 101.96$ Fe = 55.85 $CuCl_2 = 134.45$ NaNO₃ = 84.995 $Cu(NO_3)_2 = 187.56$ NaCl = 58.443 $Ba_3(PO_4)_2 = 601.92$ $Na_3(PO_4) = 163.94$ $BaCl_2 = 208.2$

Some molar masses to help speed things up for you 😳 $C_3H_8 = 44.1$ O₂ = 32 $H_2O = 18$ $AI_2(SO_3)_3 = 294.2$ NaOH = 40 $Na_2SO_3 = 126.04$ $AI_2O_3 = 101.96$ Fe = 55.85 $CuCl_2 = 134.45$ $NaNO_3 = 84.995$ $Cu(NO_3)_2 = 187.56$ NaCl = 58.443 $Ba_3(PO_4)_2 = 601.92$ $Na_3(PO_4) = 163.94$ $BaCl_2 = 208.2$

<u>Some answers so you</u> <u>can check your work as</u> <u>you go</u> ☺

1)

- A) O_2 is LR and C_3H_8 is XS
- B) $1.55 \text{ g H}_2\text{O}$ made
- C) 13.87 g C_3H_8 left

2)

- A) Al₂(SO₃)₃ is LR and NaOH is XS
- B) 12.85 g Na₂SO₃ made
- C) 1.842 g NaOH left

3)

- A) Fe is LR and Al₂O₃ is XS
- B) $0.061 \text{ mol } \text{Fe}_3\text{O}_4 \text{ made}$
- C) 17.1 g Al₂O₃ left

4)

- A) $CuCl_2 + 2NaNO_3 \rightarrow Cu(NO_3)_2 + 2NaCl$
- B) CuCl₂ is LR
- C) 0.224 mol NaCl made
- D) 21.01 g Cu(NO₃)₂ made
- E) 0.011 mol NaNO₃ left
- F) 86.3% yield

5)

- $6NaCl + Ba_3(PO_4)_2 \rightarrow 2Na_3(PO_4) + 3BaCl_2$
- NaCl is LR
 - A) 935.0 g Na₃(PO₄) made and 1781.2 g BaCl₂ made
 - B) 283.52 g Ba₃(PO₄)₂ left

6)

- A) 162.23 g calcium containing product made
- B) 249.67 g XS left

<u>Some answers so you</u> <u>can check your work as</u> <u>you go</u> ☺

1)

- A) O_2 is LR and C_3H_8 is XS
- B) 1.55 g H₂O made
- C) 13.87 g C₃H₈ left

2)

- A) Al₂(SO₃)₃ is LR and NaOH is XS
- B) 12.85 g Na_2SO_3 made
- C) 1.842 g NaOH left

3)

- A) Fe is LR and Al₂O₃ is XS
- B) 0.061 mol Fe₃O₄ made
- C) 17.1 g Al₂O₃ left

4)

- A) $CuCl_2 + 2NaNO_3 \rightarrow$
- $Cu(NO_3)_2 + 2NaCl$ B) $CuCl_2$ is L B
- B) $CuCl_2$ is LR
- C) 0.224 mol NaCl made
- D) 21.01 g $Cu(NO_3)_2$ made
- E) 0.011 mol NaNO₃ left
- F) 86.3% yield

5)

- $6NaCl + Ba_3(PO_4)_2 \rightarrow 2Na_3(PO_4) + 3BaCl_2$
 - NaCl is LR A) 935.0 g Na₃(PO₄) made and 1781.2 g BaCl₂ made
 - B) 283.52 g Ba₃(PO₄)₂ left

6)

A) 162.23 g calcium containing product madeB) 249.67 g XS left

<u>Some answers so you</u> <u>can check your work as</u> <u>you go</u> ☺

1)

- A) O_2 is LR and C_3H_8 is XS
- B) $1.55 \text{ g H}_2\text{O}$ made
- C) 13.87 g C_3H_8 left

2)

- A) Al₂(SO₃)₃ is LR and NaOH is XS
- B) 12.85 g Na_2SO_3 made
- C) 1.842 g NaOH left

3)

- A) Fe is LR and Al₂O₃ is XS
- B) $0.061 \text{ mol } \text{Fe}_3\text{O}_4 \text{ made}$
- C) 17.1 g Al₂O₃ left

4)

- A) $CuCl_2 + 2NaNO_3 \rightarrow Cu(NO_3)_2 + 2NaCl$
 - B) CuCl₂ is LR
 - C) 0.224 mol NaCl made
 - D) 21.01 g Cu(NO₃)₂ made
- E) 0.011 mol NaNO₃ left
- F) 86.3% yield

5)

- $6NaCl + Ba_3(PO_4)_2 \rightarrow 2Na_3(PO_4) + 3BaCl_2$
 - NaCl is LR A) 935.0 g Na₃(PO₄) made and 1781.2 g BaCl₂ made
 - B) 283.52 g Ba₃(PO₄)₂ left

6)

- A) 162.23 g calcium containing product made
 B) 240.67 a XS left
- B) 249.67 g XS left